Reinforcement learning and optimal adaptive control: An overview and implementation examples
نویسندگان
چکیده
This paper provides an overview of the reinforcement learning and optimal adaptive control literature and its application to robotics. Reinforcement learning is bridging the gap between traditional optimal control, adaptive control and bio-inspired learning techniques borrowed from animals. This work is highlighting some of the key techniques presented by well known researchers from the combined areas of reinforcement learning and optimal control theory. At the end, an example of an implementation of a novel model-free Q-learning based discrete optimal adaptive controller for a humanoid robot arm is presented. The controller uses a novel adaptive dynamic programming (ADP) reinforcement learning (RL) approach to develop an optimal policy on-line. The RL joint space tracking controller was implemented for two links (shoulder flexion and elbow flexion joints) of the arm of the humanoid BristolElumotion-Robotic-Torso II (BERT II) torso. The constrained case (joint limits) of the RL scheme was tested for a single link (elbow flexion) of the BERT II arm by modifying the cost function to deal with the extra nonlinearity due to the joint constraints. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Reinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning Based PID Control of Wind Energy Conversion Systems
In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...
متن کاملMini/Micro-Grid Adaptive Voltage and Frequency Stability Enhancement Using Q-learning Mechanism
This paper develops an adaptive control method for controlling frequency and voltage of an islanded mini/micro grid (M/µG) using reinforcement learning method. Reinforcement learning (RL) is one of the branches of the machine learning, which is the main solution method of Markov decision process (MDPs). Among the several solution methods of RL, the Q-learning method is used for solving RL in th...
متن کاملOptimal adaptive leader-follower consensus of linear multi-agent systems: Known and unknown dynamics
In this paper, the optimal adaptive leader-follower consensus of linear continuous time multi-agent systems is considered. The error dynamics of each player depends on its neighbors’ information. Detailed analysis of online optimal leader-follower consensus under known and unknown dynamics is presented. The introduced reinforcement learning-based algorithms learn online the approximate solution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annual Reviews in Control
دوره 36 شماره
صفحات -
تاریخ انتشار 2012